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1 Motivation - application to Tate’s theorem

First, let me remind you of the statement of Tate’s theorem.

Theorem 1.1 (Tate’s theorem). Let G be a finite group and A a G-module. Suppose that
for all subgroups H ⊂ G that

1. H1(H,A) = 0.

2. H2(H,A) is cyclic of order |H|.

Then a choice of generator γ of H2(G,A) induces an isomorphisms

Ĥ i(G,Z)→ Ĥ i+2(G,A)

for all i ∈ Z.

To construct the local Artin map in local class field theory, we will want to apply this in the
following situation: K is a nonarchimedean, complete local field (such as Qp), L/K a finite
Galois extension, G = Gal(L/K), and A = L×. By Galois theory, if H ⊂ G is a subgroup,
then H = Gal(L/E) for an intermediate field E, and then by Hilbert 90,

H1(H,A) = H1(Gal(L/E), L×) = 0
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The remaining part of the hypotheses of Tate’s theorem that we need is

H2(H,A) = H2(Gal(L/E), L×) ∼= Z/mZ

where m = |H| = [L : E]. In principle, we need this for all subgroups H, so for all
intermediate fields E. However, E is just another local field (with extended valuation from
K), so it suffices to show

Br(L/K) ∼= H2(Gal(L/K), L×) ∼= Z/mZ

The resulting isomorphism of Tate’s theorem is called the local Artin map.
I include the reminder about the identification of this with the relative Brauer group just

for flavor. We’re going to prove this by purely group cohomological considerations, without
thinking about central simple algebras. Along the way, we’ll prove

Br(Kun/K) ∼= Q/Z

From Igor’s notes, we actually know that

Br(Kun/K) = Br(K)

so one way to think of my talk to day is just as the computation of the Brauer group of a
local field. You can do this from the algebras side, as done in Igor’s notes [3], but I’m going
to follow chapter 3 of Milne [2] instead.

Although eventually we want this to work for any finite Galois extension L/K, today we
are just going to consider the case of an unramified extension L/K.

2 Brauer group of a local field

For the rest of the talk, let K be a complete nonarchimedean local field. If I just say ”local
field,” I also mean nonarchimedean and complete.

2.1 Review of local fields - extending valuations, ramification, un-
ramified extensions

Theorem 2.1. Let K be a local field, and L/K a finite extension of degree n. Then the
absolute value (or valuation) extends uniquely to L, and L is complete with respect to the
extended value. In particular, the extended absolute value is described for β ∈ L by

|β|L = |NL
K(β)|1/nK

Proof. Milne, Algebraic Number Theory, Theorem 7.38 [1].

Definition 2.2. Let K be a local field with nonarchimedean absolute value | · |K and discrete
valuation vK . The associated local ring of K is

OK = {x ∈ K : |x|K ≤ 1} = {x ∈ K : vK(x) ≥ 0}
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Since OK has a discrete valuation, it is a local PID. The maximal ideal is

mK = {x ∈ K : |x|K < 1} = {x ∈ K : vK(x) > 0}

The residue field of K is the quotient kK = OK/mK . A uniformizer π for K is a generator
for mK .

(π) = mK

Definition 2.3. Let K be a complete nonarchimedean discretely valued field, and L/K a
finite extension. Let kK be the associated residue field of K and kL the associated residue
field of L. Note that OK ⊂ OL and mK ⊂ mL, hence

kK ↪→ kL

The residual degree is
f(L|K) = fLK = [kK : kL]

Definition 2.4. Let K be a complete nonarchimedean discretely valued field, and L/K a
finite extension with d = [L : K]. Let vK : K× → Z be a normalized discrete valuation. Let
vL : L× → R be the extension of vK , and the we know that

im vL ⊂
1

d
Z

so vL is also discrete. The ramification degree is

e(L|K) = eLK = eL/K = [vL(L×) : vK(K×)]

That is, if πK is a uniformizer for K and πL is a uniformizer for L, then

(πK) =
(
π
e(L|K)
L

)
as ideals of OL.

Definition 2.5. Let L,K, eL/K , fL/K be as above. If eL/K = 1, then L/K is unramified.
if fL/K = 1, then L/K is totally ramified.

Remark 2.6. Today we’re going to be dealing with primarily unramified extensions. This
just means that a uniformizer π for K is also a uniformizer for L.

Proposition 2.7. Let K be a local field, and L/K a finite extension. Then [L : K] = ef .

Proposition 2.8. Let K be a local field. There is a bijection

{finite unramified extensions of K} → {finite extensions of kK}
L = K(α) 7→ kL = kK(α)

This correspondence preserves Galois groups. That is, Galois extensions L/K correspond
to Galois extensions kL/kK, and corresponding Galois extensions have isomorphic Galois
groups.

Gal(L/K) ∼= Gal(kL/kK)

Remark 2.9. In our case, a local field K has a finite residue field k, and k has a unique
finite extension of degree n, which is cyclic Galois, so K has a unique unramified extension
Kn of degree n, which is cyclic Galois.
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2.2 Cohomology computations

Definition 2.10. Let K be a local field with normalized discrete valuation v : K× → Z.
Let O×K be the group of units of OK .

O×K =
{
x ∈ K× : v(x) = 0

}
=
{
x ∈ K× : |x| = 1

}
Fix a uniformizer π for K, so that mK = (π). Now set

UK = O×K
Um
K = 1 + πmOK = {1 + aπm : a ∈ OK} m ∈ Z≥1

Notation: In all of the following lemmas, we fix notation as follows. K will be a local field,
and L/K a finite unramified extension of degree n = [L : K]. The respective residue fields
will be k, `. We fix a uniformizer π for K (and L). Set G = Gal(L/K) ∼= Gal(`/k), and note
that G ∼= Z/nZ.

Lemma 2.11 (Milne [2], Chapter 3, Lemma 1.3). Let K,L, k, `, π,G be as above. There are
exact sequences of G-modules

1 U1
L UL `× 1

1 Um+1
L Um

L ` 0

u7→u mod π

1+aπm 7→a mod π

1 which induce isomorphisms (for all m ∈ Z≥1)

UL/U
1
L
∼= `× Um

L /U
m+1
L
∼= `

Proof. Exactness is easily checked by inspection. The isomorphisms come from the first
isomorphism theorem.

Remark 2.12. Recall that for a cyclic group (such as G), the Tate cohomology of any
G-module A is 2-periodic,

· · · ∼= Ĥ0(G,A) ∼= Ĥ2(G,A) ∼= · · ·
· · · ∼= Ĥ1(G,A) ∼= Ĥ3(G,A) ∼= · · ·

Recall that the Herbrand quotient of A is defined to be

h(A) =
|Ĥ0(G,A)|
|Ĥ1(G,A)|

when things are finite. Recall a result that Stan proved, that if A is finite, then h(A) = 1.
This implies that all the Tate cohomology groups of A have the same order.

· · · = |Ĥ0(G,A)| = |Ĥ1(G,A)| = · · ·
1It may look funny to write 0 at one end of the sequence and 1 at the other, I’ve just done this to

emphasize that Um
L , UL, `

× are written multiplicatively, while ` is written additively. Both 1 and 0 refer to
the trivial group.
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Lemma 2.13 (Milne [2], Chapter 3, Lemma 1.4). Let K,L, k, `, G be as above.

1. Ĥ i(G, `×) = 0 for all i ∈ Z.

2. The norm map N`
k : `× → k× is surjective.

Proof. (1) By Hilbert 90, H1(G, `×) = 0. Since `× is finite, by the previous remark/discussion,

h(`×) = 1 so all the groups Ĥ i(G, `×) are zero.

(2) Recall that Ĥ0(G,A) is, by definition, (`×)G/NG(`×) = k×/NG(`×). Since field norm

map agrees with the group norm map, and Ĥ0(G, `×) = 0, this says that the norm map from
`× to k× is surjective.

Lemma 2.14 (Milne [2], Chapter 3, Lemma 1.5). Let K,L, k, `, π,G be as above.

1. Ĥ i(G, `) = 0 for all i ∈ Z.

2. The trace map Tr : `→ k is surjective.

Proof. (1) By the additive version of Hilbert 90, H i(G, `) = 0 for i > 0. By periodicity
(since G is cyclic), they then vanish for all i.

(2) As in the previous lemma, we consider Ĥ0(G, `) = `G/NG` = k/NG`. For additive

structure of `, the group norm map is the trace map. Since Ĥ0 vanishes, the trace map is
surjective.

Proposition 2.15 (Milne [2], Chapter 3, Proposition 1.2). Let K,L, k, `, G be as above.

1. The norm map NL
K : UL = O×L → UK = O×K is surjective.

2. Ĥ0(G,UL) = 0.

Proof. (1) We combine our exact sequences from Lemma 2.11 into some commutative dia-
grams of G-modules. The maps on the right are surjective by the previous two lemmas.

1 U1
L UL `× 1

1 U1
K UK k× 1

1 Um+1
L Um

L ` 0

1 Um+1
K Um

K k 0

N N N

N N Tr

We want to how N : UL → UK is surjective, so let u ∈ UK = O×K , and let u be the image in
k× = (OK/mK)×. By surjectivity of N : `× → k× and UL → `×, there exists v0 ∈ UL = O×L
such that N(v0) = u. That is, uN(v0)

−1 ∈ ker(UK → k×), so by exactness, it is in the image,
which is U1

K .
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Now we perform the same diagram chase on the second diagram. By surjectivity of
U1
L → `→ k, there exists v1 ∈ U1

L such that N(v1) = uN(v0)−1. Thus

uN(v0)
−1 N(v1)

−1 = uN(v0v1)
−1 ∈ ker(Um

K → k) = U2
K

Repeating this inductively with the second diagram, we obtain vi ∈ U i
L such that

uN(v0v1 · · · vi)−1 ∈ U i+1
K

Now we claim that the sequence an =
n∏
i=1

vi converges (in U1
L). Then because

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

|vn| = 1

Since UL is complete, the Cauchy sequence an has a limit, so we can set

a = lim
n→∞

an = lim
n→∞

n∏
i=1

vi

Then

uN(an)−1 ∈ Un
K =

n⋂
i=1

U i
K =⇒ uN(a)−1 ∈

∞⋂
i=1

U i
K = {1}

so u = N(a). This proves the surjectivity that we wanted.
(2) By definition,

Ĥ0(G,UL) = U
Gal(L/K)
L /NGUL = UK/NGUL

Since the group norm coincides with field norm and by (1) the field norm is surjective here,

Ĥ0(G,UL) = 0.

Proposition 2.16 (Milne [2], Chapter 3, Proposition 1.1). Let K,L, π,G be as above. Then

Ĥ i(G,UL) = 0 for all i ∈ Z.

Proof. Every element α ∈ L× can be written uniquely as α = uπm where u ∈ UL = O×L ,m =
vL(α) ∈ Z, which gives an isomorphism

L× → UL × Z uπm 7→ (u,m)

Since L/K is unramified, π ∈ K as well, so the G = Gal(L/K)-action on L× satisfies, for
τ ∈ G,

τ(uπm) = (τu)πm

which is to say, the isomorphism L×UL×Z is an isomorphism of G-modules, with Z viewed
as trivial G-module. Thus

Ĥ i(G,L×) ∼= Ĥ i(G,UL × Z) ∼= Ĥ i(G,UL)× Ĥ i(G,Z)

For i = 1, the first of the above is zero by Hilbert 90. By Proposition 2.15, Ĥ0(G,UL) = 0.

Then by 2-periodicity for G cyclic, we get Ĥ i(G,UL) = 0 for all i ∈ Z.
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Corollary 2.17 (Milne [2], Chapter 3, Corollary 1.6). Let F/K be an infinite unramified
Galois extension, and G = Gal(F/K). Then H i(G,UF ) = 0 for i ∈ Z>0.

Proof. This follows immediately from the previous proposition and the fact that cohomology
for F is a direct limit of cohomology groups over finite unramified Galois extensions L/K.

H i(Gal(F/K), UM) = lim−→H i(Gal(L/K), UL) = lim−→ 0 = 0

2.3 Relative Brauer group of maximal unramified extension, and
invariant maps

Definition 2.18. Let L/K be an unramified (possibly infinite) extension, with vL the ex-
tended valuation on L and Galois group G = Gal(L/K). From the short exact sequence

0→ UL → L×
vL−→ Z→ 0

(where Z is a tivial G-module) we get a long exact sequence on H i(G,−), where the
H i(G,UF ) terms vanish, so we get an isomorphism

H2(G,L×) H2(G,Z)
vL
∼=

We can also consider the short exact sequence of trivial G-modules

0→ Z→ Q→ Q/Z→ 0

In the associated long exact sequence, the H i(G,Q) terms vanish, because they are torsion
(a direct limit of torsion groups is torsion) and they are “uniquely divisible,” which is to say,
they are Q-vector spaces. A torsion group with a Q-action must be zero. So the connecting
homomorphism is an isomorphism.

H1(G,Q/Z) H2(G,Z)δ
∼=

Recall that for trivial modules, H1 is the same as Hom. Well actually, for profinite cohomol-
ogy, it’s continuous homomorphisms, so

H1(G,Q/Z) ∼= Homcts(G,Q/Z)

Recall that G has a special element σ = FrobF/K , which restricts to the Frobenius automor-
phism on any finite unramified subextension, so we have a map

Homcts(G,Q/Z)→ Q/Z f 7→ f(σ)

Combining all of this, we define the invariant map

invL/K : H2(G,L×)→ Q/Z

as the composition

H2(G,L×) H2(G,Z) H1(G,Q/Z) Homcts(G,Q/Z) Q/ZvL
∼=

δ−1

∼= ∼=
f 7→f(σ)
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Theorem 2.19 (Milne [2], Chapter 3, Theorem 1.7). Let K be a local field.

1. If Kn/K is finite unramified with n = [Kn : K], then invKn/K is an isomorphism

invKn/K : H2(Gal(Kn/K), K×n )→ 1

n
Z/Z ∼= Z/nZ

2. If K ⊂ Kn ⊂ Km is a tower of finite unramified extensions (this happens if n|m), then
the following diagram commutes.

H2(Gal(Kn/K), K×n ) 1
n
Z/Z

H2(Gal(Km/K), K×m) 1
m
Z/Z

invKn/K

Inf

invKm/K

That is to say, the maps invL/K give an isomorphism of directed systems between
H2(Gal(Kn/K), L×) for Kn/K finite with Inf maps, and the system Z/nZ for n ∈ Z≥1
with inclusion maps when n|m, inducing an isomorphism on the direct limit,

invK : H2(Gal(Kun/K), Kun×)
∼=−→ Q/Z

Proof. (1) To show invKn/K is injective, we just need to consider the kernel of

Homcts(G,Q/Z)
f 7→f(σ)−−−−→ Q/Z

Recall that σ is a topological generator for G (the subgroup generated by σ) is dense, so if
f(σ) = 1, then by continuity f is the trivial map. Thus invKn/K is injective. (This works in
the infinite case too, though we don’t need this.) For Kn/K finite, we have G = Z/nZ, and
homomorphisms Z/nZ→ Q/Z can only take the n-torsion element σ to n-torsion elements
of Q/Z, so the image is the subgroup 1

n
Z/Z.

(2) To see that invL/K commutes with Inf, it suffices to check that each map in the
composition defining invL/K commutes with Inf. For the first three isomorphisms, this is
“obvious” because Inf always commutes with maps in a long exact sequence on cohomology.
For the final map, we just think about what Inf does in terms of cochains.

Inf : Homcts(Gal(Kn/K), K×n )→ Homcts(Gal(Km/K), K×m) f 7→ (x 7→ f(x))

where x ∈ Gal(Km/K), and x = x mod Gal(Km/Kn) ∈ Gal(Kn/K) ∼= Gal(Km/K)
Gal(Km/Kn)

. In terms

of this description, we can see that the square commutes. Let σm ∈ Gal(Km/K), σn ∈
Gal(Kn/K) be the respective Frobenius elements (generators).

invKm/K ◦ Inf(f) = invKm/K

(
x 7→ f(x)

)
= f(σm|Kn) = f(σn) = invKn/K)(f)

This works out because σm restricts to σn on Kn, these are equal.

Remark 2.20. This computes all of the relative Brauer groups of unramified extensions of
K, including the maximal unramified extension.

Br(Kun/K) ∼= Q/Z
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2.4 Interpretation of multiplication by n

Ok, so we know that Br(Kun/K) ∼= Q/Z for a finite field K. Remember that if we have a
finite extension L/K with [L : K] = n, we have the tensor homomorphism,

ε : Br(Kun/K)→ Br(Lun/L) [A] 7→ [A⊗K L]

which is now a homomorphism Q/Z → Q/Z. The kernel of this is Br(L/K), which cor-
responds to the subgroup 1

n
Z/Z, so ε must correspond to the multiplication-by-n map on

Q/Z.
We can also describe this correspondence more directly, which is the content of the next

theorem. Hmm... or we could skip everything that follows this, because it follows more
easily from what I just said here.

Remark 2.21. By work that Igor does in his notes [3], it turns out that Br(Kun/K) is all
of Br(K), so the Brauer group of a local field is Q/Z.

2.4.1 Unnecessary stuff for quick proof

Remark 2.22. For a local field K, the maximal unramified extension Kun/K is formed by
adjoining all mth-roots of unity with m not divisible by the characteristic of the residue field
k. To see this, recall the correspondence between finite unramified extensions of K and finite
extensions of k.

Kun =
⋃
Kn Fp =

⋃
Fpn

Kn Fpn

K Fp

Recall that Fpn is formed by adjoining all roots of xp
n − x, which is to say, all (pn − 1)th

roots of unity. So Fp is formed by adjoining all p − 1, p2 − 1, p3 − 1 etc. roots of unity. So
Kun is similarly formed by adjoinining various roots of unity. 2

Remark 2.23. As a consequence of the previous remark, if L/K is a finite extension of local
fields, then Lun is the compositum of L and Kun, since the maximal unramified extensions of
each are formed by adjoining all roots of unity not dividing the characteristic of the residue
fields.

Remark 2.24. Let L/K be a finite extension of local fields, let ΓK = Gal(Kun/K),
ΓL = Gal(Lun/L). There is a restriction map

res : ΓL → ΓK τ 7→ τ |Kun

This makes sense because of τ fixes L, it certainly fixes K. Note that because Lun = LKun,
it is injective, because if τ |L = Id and τ |Kun = Id, it is the identity on the compositum
LKun = Lun.

2I am mildly suspicious about this chain of reasoning.
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Let σL, σK be the respective Frobenius elements of ΓL,ΓK , which means that they restrict
to the Frobenius generator on any finite subextension. That is, σK(x) = xq on k = Fq, and

σL(x) = xq
f

on ` = Fqf , where f = [` : k] is the residual field degree. Thus res(σL) = σfK .

Definition 2.25. Let L/K be a finite extension of local fields, and let ΓK ,ΓL be as above.
We define

Res : H2(ΓK , K
un×)→ H2(ΓL, L

un×) [φ] 7→ [ι ◦ φ ◦ res2]

where ι : Kun× ↪→ Lun× is the inclusion. This is essentially the same as the usual restriction
map for group cohomology. Really what’s going on is that this is the composition

H2(ΓK , K
un×)

R̃es−−→ H2(Gal(Kun/L), Kun×)→ H2(ΓL, L
×)

where R̃es is the usual group cohomology restriction map [φ] 7→ [φ|Gal(Kun/L], and the second
map is [φ] 7→ [ι ◦ φ ◦ res2].

2.4.2 Main result interpreting multiplication by n, can skip long proof

Proposition 2.26 (Milne [2], Chapter 3, Proposition 1.8). Let L/K be a finite extension of
local fields with n = [L : K], and let ΓK ,ΓL be as above. The following diagram commutes.

Br(Kun/K) H2(ΓK , K
un×) Q/Z

Br(Lun/L) H2(ΓL, L
un×) Q/Z

β−1
Kun/K

∼=

−⊗KL Res

invK
∼=

n

β−1
Lun/L

∼=
invL
∼=

Proof. (Quick proof.) We already know commutativity of the left square, and commutativity
of the outer rectangle, so we’re done.

Proof. (Direct proof of commutativity of right square.) Let e, f be the ramification index
and residual field degree for L/K. From the definition of invK , invL, to show commutativity
of the second square, we need commutativity of the following three squares.

H2(ΓK , K
un×) H2(ΓK ,Z) H1(ΓK ,Q/Z) Q/Z

H2(ΓL, L
un×) H2(ΓL,Z) H1(ΓL,Q/Z) Q/Z

vK

Res

δ−1

eRes

f 7→f(σK)

eRes ef=n

vL δ−1 f 7→f(σL)

Recall that ef = n by the theory of local fields. By definition of e, we have the commutative
square

Kun× Z

Lun× Z

vK

ι e

vL

It follows that the leftmost square commutes. Here are some confusing symbols trying to
explain why this follows. If they don’t help you, ignore them.

vL Res[φ] = [vL ◦ ι ◦ f ◦ res2] = [e ◦ vK ◦ φ ◦ res2] = e vK Res[φ]
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The second square, ignoring the e’s, just says that regular Res commutes with boundary
maps, which we know, so the middle square commutes. Again ignoring e’s, the rightmost
square is

Hom(ΓK ,Q/Z) Q/Z

Hom(ΓL,Q/Z) Q/Z

φ 7→φ(σK)

φ 7→φ◦res f

φ 7→φ(σL)

As we remarked earlier, res(σL) = σfK , so this square commutes. Potentially confusing
symbol explanation included below.(
φ 7→ φ(σL)

)
◦
(
φ 7→ φ ◦ res

)
=
(
φ 7→ φ

(
res(σL)

))
=
(
φ 7→

(
φ(σfK)

))
=
(
φ 7→ f ◦ φ(σK)

)
Then multiplying both downward arrows by e, we obtain the rightmost square.
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